Categories
Electronic Components

Robots in automotive manufacturing

Robots used in automotive manufacturing

The automotive industry is one of the most highly automated supply chains in the world. Of course, robots alone can’t manufacture vehicles, but you can find them in every step of the process.

Welding

Every car needs a large amount of welding, so it makes sense to automate these steps where possible in manufacture.  Welding is a hazardous job, with extreme temperatures, chemicals and weld flash. Taking the human element away from this will not only benefit manufacturers, but will also keep workers safe.

Welding is a job that requires a high degree of accuracy so repeatable, high accuracy welds without human error are also desirable. As the industry progresses and lighter cars are required, and tighter welds that are only possible because of robots.

Painting, coating and sealing

Similarly with welding, painting cars is a job that releases toxic flames and puts workers undertaking it at risk. It also allows the painting to be inhumanly even and perfectly distributed. The same robots can often prime and seal a car body too.

Internal logistics

Just in case you weren’t aware, cars are pretty heavy. Robotics keep the assembly line going by moving heavy loads between stages.

Additionally transporting incoming and outgoing goods can be optimised by swapping the usual manually-operated forklifts for autonomous mobile robots (AMRs). These AMRs can navigate without help to different areas of a facility depending on their cargo. They can also easily deal with awkwardly-shaped objects where a forklift may not.

Assembly

Just as with larger components, smaller car parts can also be assembled by robots. With components like motors that are potentially too small for human hands, automation can be useful.

There are plenty of other areas in the car manufacturing process that are improved with automation. These include removal of material, fixing other machines and dealing with molten metal.

They are not alone

Robots cannot function without human counterparts. The machines need to be programmed, controlled and maintained by staff. So, instead of robots replacing workers, workers and robots have to work together to successfully run a manufacturing facility.

Supplied for you

Lantek can provide a substantial range of electronic components, and we’re experts at sourcing hard-to-find components when others cannot. If you’re looking for components, whether they’re obsolete or day-to-day, choose Lantek as your supplier. Contact us now on 1-973-579-8100, or send us an email at sales@lantekcorp.com.

Disclaimer: This blog is purely for informational purposes and is not instructional. 

Categories
Electronic Components

The effect of AI on the electronics supply chain

The effect of AI on the electronics supply chain

AI and machine learning technology is improving all the time and, consequently, the electronics industry is taking more notice. Experts predict that the application of AI in the semiconductor industry is likely to accelerate in the coming years.

The industry will not only produce AI chips, but the chips themselves could be harnessed to improve the efficiency of the electronic component supply chain.

What’s included

In an AI chip there is a GPU, field-programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) specialized for AI.

CPUs were a common component used for basic AI tasks, but as AI advances they are used less frequently. The power of an AI depends on the number and size of transistors it employs. The more, and smaller, the transistors, the more advanced the AI chip is.

AI chips need to do lots of calculations in parallel rather than sequentially, and the data they process is immense.

Think about it

It’s been proposed by some that designing AI chips and networks to perform like the human brain would be effective. If the chips acted similarly to synapses, only sending information when needed, instead of constantly working.

For this use, non-volatile memory on a chip would be a good option for AI. This type of memory can save data without power, so wouldn’t need it constantly supplied. If this was combined with processing logic it could make system on a chip processors achievable.

What is the cost?

Despite the designs being created for AI chips, production is a different challenge. The node size and costs required to produce these chips is often too high to be profitable. As structures get smaller, for example moving from the 65nm node to the latest 5nm, the costs skyrocket. Where 65nm R&D cost $28 million, 5nm costs $540 million. Similarly with fab construction for the same two nodes, price increased from $400 million to $5.4 billion.

Major companies have been making investments into the R&D of AI chip infrastructure. However, at every stage of the development and manufacturing process, huge amounts of capital are required.

As AI infrastructure is so unique depending on its intended use, often the manufacturers also need to be highly specialized. It means that the entire supply chain for a manufacturer not yet specialized will cost potentially millions to remodel.

Beauty is in the AI of the beholder

The use of AI in the electronics industry could revolutionize how we work, and maximize a company’s profits. It could aid companies in supply forecasts and optimizing inventory, scheduling deliveries and so much more.

In every step of the electronics supply chain there are time-consuming tasks that AI and machine learning could undertake. In the sales stage, AI could assist with customer segmentation and dynamic pricing, something invaluable in the current market. It could additionally prevent errors in the manufacturing process and advance the intelligence of ICs and semiconductors manufactured.

Artificial intelligence

We’re not quite at the stage where AI has permeated throughout the industry but it’s highly likely that it will in the coming years. That said, this blog post is all speculation and is in no way to inform decisions.

Lantek can provide all types of electronic components, no matter what you’re building. See how we can help you by getting in touch today. Contact us at sales@lantekcorp.com, or use the rapid enquiry form on our website to get results fast.

Categories
Electronic Components

Procurement executives concerned about digital innovation

Procurement executives concerned about digital innovation

Manufacturers are using digital advancements to battle current supply chain disruptions.

Almost all (97%) of those surveyed said they had significant disruptions in their direct materials supply chain.

67% said they were not confident that the technology can cope with the current or near-future challenges.

The most significant technology disadvantages seem to come with lack of visibility into supplier, ‘disjointed’ source-to-pay process with multiple systems, and a lack of spend reporting.

Even more (87%) said modernising the manufacturing procurement and supply chain takes precedence, and it is their biggest challenge yet. A further 92% said avoiding disruptions to their supply chain is their main goal for this year.

The main issues

Among the main concerns for modernising the supply chain are potential disruptions during implementation, skills shortages, and scale and challenge of change management.

Around half of those surveyed (44%) predicted that the supply chain crisis would begin to calm by 2023. Significantly less (18%) thought it would reduce by the end of this year.

The study surveyed 233 senior procurement executives from US and UK manufacturing companies. It was commissioned by Ivalua, a spend management cloud provider.

See the original press release from Ivalua here.

Analysis

While Covid-19 was seen as a factor in the supply chain instability, it was not the only culprit. Global supply chains had already been in a vulnerable position, partly due to factors like too much outsourcing and an overreliance on ‘just-in-time’ supply management.

What some are calling ‘outdated technologies’ are slowly being replaced in Industry 4.0. However, the implementation of tech like IoT, AI, machine learning and cloud computing is not a quick process.

The issue may be that this transition period would only further add to the current shortages rather than solving them in the short-term. Most companies are being deterred by this potential loss, and have been avoiding the change for as long as possible.

Whenever digital innovation comes, it will be a gradual and time-consuming process, but businesses will be better off for it.

Categories
component shortage Electronic Components

Perfect storm’ creates electronic component shortages

Perfect storm' creates electronic component shortages

A perfect storm has hit the electronic components market, creating supply chain problems that will be felt for several years.

The perfect storm

Even before the COVID-19 pandemic, most electronic component manufacturers were running at 95-98% capacity.

This high demand for electronic components was fuelled by growth in technologies like automation and the Internet of Things – technologies that are only in their infancy now but will mature in the next decade.

This high manufacturing output was felt across all types of components, especially chips (semiconductors, memory) and integrated circuits. It was even difficult to get a hold of some active and passive components in 2019.

Then, in 2020, the COVID-19 pandemic hit. Car manufacturers and other manufacturers affected by shutdowns paused orders for electronic components. Meanwhile, manufacturers benefitting from lockdowns scaled up.

Now, with the development and roll-out of COVID-19 vaccines, industries that shut down have opened up again. But there’s a problem – demand for electronics has not wavered and there isn’t enough manufacturing capacity to serve everyone.

Quite simply, there isn’t enough bread to go around.

Demand is ramping up

We are now in a situation where electronic components manufacturers are running at 99-100% capacity. Demand has soared for all types of components, from chips and memory to diodes and displays. This is squeezing most supply chains.

There are so many contributors to this squeeze. Emerging technologies like AI, automation, virtual reality, augmented reality and machine learning are fuelling demand for smarter chips and data centre modernization, while technologies like 5G and Wi-Fi 6 are demanding infrastructure rollout, which requires a significant effort.

When it comes to chips, however, cars are the biggest users. Cars can have as many as 22,000 multilayer ceramic capacitors (MLCCs) each. This will increase as cars get smarter (a self-driving taxi sounds great, but it’ll need around 30,000 chips).

Suppliers are slowly adapting

There has been years of under-investment in new foundries and plants. This under-investment has affected manufacturing capacity today.

To their credit, most manufacturers are looking to expand capacity by setting up new foundries or acquiring plants. Trouble is that most plants take years to set up. Some plants that started a build in 2017 are still being built.

Staffing is also an issue. The biggest challenge suppliers face is social distancing and COVID prevention policies, which have reduced staff numbers in many factories.

You can’t automate every process in a factory, so it is a given that having fewer staff will increase lead times. Some manufacturers have been harder hit than others with this, but all will experience staff shortages during the pandemic.

In addition to this, freight has become more challenging during the pandemic. Things are taking longer to move and there are fewer commercial flights. Global shipping rates have skyrocketed during the pandemic because of this. Higher shipping rates have contributed to price increases for most electronic components.

Weathering the storm

We predicted the electronics component shortage in early 2020 following the USA’s national lockdown. We knew supply chains would be squeezed and stretched due to changes in economic output and industry trends.

The best way to weather the storm is to work with us or another reputable electronic components distributor. We focus on delivering outstanding service, with industry leading quality and dependability. Call us at 001 973 579 8100 to chat.

 

Categories
Electronic Components

NXP Announces i.MX 9 and i.MX 8 processor line for Intelligent Multi-sensor Applications

NXP announces i.MX8 and 9 processor line for multi-sensor applications

NXP Semiconductors has announced a new line of edge processors that deliver a giant leap in performance and security at the edge.

As edge computing rapidly evolves around us and demand for edge computing soars, performance demands are increasing at an exponential rate. This requires a new approach to security, power consumption and performance. Existing edge processors offer a solution now but are not ready for the next generation of real-time data.

Technologies like machine learning, artificial intelligence, robotics, autonomous driving and next-gen wireless infrastructure all depend on the edge. NXP Semiconductors is meeting the challenge with new i.MX 9 and i.MX 8 processor lines.

i.MX 8ULP and i.MX 8ULP-CS

The ultra-low power i.MX 8ULP and i.MX 8ULP-CS (cloud secured) Microsoft Azure Sphere-certified processors have the EdgeLock secure enclave, a pre-configured security subsystem that simplifies complex security technologies and helps designers avoid costly errors. It automates the following security functions:

  • Root of trust
  • Run-time attestation
  • Trust provisioning
  • Secure boot
  • Key management
  • Cryptographic services

The i.MX 8ULP-CS is Microsoft Azure Sphere-certified with Microsoft Pluton enabled on EdgeLock for highly secure hardware. With Azure Sphere, it has chip-to-cloud security built in, enabling use in a wide range of applications.

Both i.MX processors utilise Energy Flex architecture, which delivers as much as 75% improved energy efficiency compared to previous generations.

They have heterogeneous domain processing and 28nm FD-SOI process technology, making them among the most advanced edge chips in the world. The processors have one or two 1GHz Arm Cortex-A35 processors, a 216MHz Cortex-M33 real-time processor and a 200MHz Fusion DSP for low-power voice and sensor hub processing.

Every Azure Sphere-certified i.MX 8ULP-CS device also gets ongoing OS and security improvements for over ten years.

i.MX 9

The i.MX 9 series is NXP Semiconductors’ range-topping high-performance edge processor for intelligent multi-sensor applications.

The i.MX 9 debuts a new generation of processors that have an independent MCU-like real-time domain and dedicated multi-sensory data processing engines for graphics, image, display, audio and voice. The i.MX 9 series also features EdgeLock secure enclave, Energy Flex architecture and hardware neural processing.

The i.MX 9 is for the next generation of edge computing applications including machine learning and artificial intelligence. It’s the first NXP line to use the Arm Ethos U-65 microNPU which enables low-power machine learning.

Importantly, Azure Sphere chip-to-cloud security is enabled within the i.MX 9 line, providing a clear upgrade path from the i.MX 8 series.

EdgeLock secure enclave is the big ticket item of the new processor lines, combining complex security technologies into a single pre-configured platform. With device-wide security intelligence, it provides a simplified path to certification, enabling non-stop trusted management services and applications.

So what?

With the release of these new processors, organisations of any size can now pursue IoT development and real-time technologies with the confidence that NXP and Microsoft have laid out a foundation of security via Microsoft Azure. The low-power requirements and chip-to-cloud security deliver innovation in the right areas.