Categories
Electronic Components

Robots in automotive manufacturing

Robots used in automotive manufacturing

The automotive industry is one of the most highly automated supply chains in the world. Of course, robots alone can’t manufacture vehicles, but you can find them in every step of the process.

Welding

Every car needs a large amount of welding, so it makes sense to automate these steps where possible in manufacture.  Welding is a hazardous job, with extreme temperatures, chemicals and weld flash. Taking the human element away from this will not only benefit manufacturers, but will also keep workers safe.

Welding is a job that requires a high degree of accuracy so repeatable, high accuracy welds without human error are also desirable. As the industry progresses and lighter cars are required, and tighter welds that are only possible because of robots.

Painting, coating and sealing

Similarly with welding, painting cars is a job that releases toxic flames and puts workers undertaking it at risk. It also allows the painting to be inhumanly even and perfectly distributed. The same robots can often prime and seal a car body too.

Internal logistics

Just in case you weren’t aware, cars are pretty heavy. Robotics keep the assembly line going by moving heavy loads between stages.

Additionally transporting incoming and outgoing goods can be optimised by swapping the usual manually-operated forklifts for autonomous mobile robots (AMRs). These AMRs can navigate without help to different areas of a facility depending on their cargo. They can also easily deal with awkwardly-shaped objects where a forklift may not.

Assembly

Just as with larger components, smaller car parts can also be assembled by robots. With components like motors that are potentially too small for human hands, automation can be useful.

There are plenty of other areas in the car manufacturing process that are improved with automation. These include removal of material, fixing other machines and dealing with molten metal.

They are not alone

Robots cannot function without human counterparts. The machines need to be programmed, controlled and maintained by staff. So, instead of robots replacing workers, workers and robots have to work together to successfully run a manufacturing facility.

Supplied for you

Lantek can provide a substantial range of electronic components, and we’re experts at sourcing hard-to-find components when others cannot. If you’re looking for components, whether they’re obsolete or day-to-day, choose Lantek as your supplier. Contact us now on 1-973-579-8100, or send us an email at sales@lantekcorp.com.

Disclaimer: This blog is purely for informational purposes and is not instructional. 

Categories
Electronic Components

The use of robotics in electronics manufacturing

The use of robotics in electronics manufacturing

The use of robotics as part of the manufacturing chain has increased in recent years, as more companies move towards automation of their services.

Robotics can limit the amount of human error possible in a production process, and can operate in confined spaces, and can even test equipment to check functionality or identify issues.

The dark side

Don’t worry, it’s not as evil as it sounds. The use of robotics is sometimes called the ‘lights out’ concept, because robots can work without requiring light. One company in Japan is pioneering this way of working.

The manufacturer uses a majority robot workforce, with almost no human intervention, to produce more manufacturing robots for their customer base, which includes Apple and Tesla.

Of course, not all manufacturers employ so many robots that they can just switch off the lights at their plants, but there are several places in the production line that robotics could speed up the manufacturing process, and many larger manufacturers have already implemented automation to a degree.

Robot wars

There are several different types of robots that are used in production, the most regular until recently being the Selective Compliance Assembly Robot Arm (SCARA). Other types include 6-Axis articulated arms, delta and cartesian robots.

Each robot has its own advantages and disadvantages, and as such depending on the task certain robots are a better choice than others.

SCARAs and 6-Axis robots are both robotic arms that are used for their high precision and speed. Although a 6-Axis is slightly slower, it has more flexibility and has a higher load capacity than the more traditional SCARA.

Delta robots have been used in the food and consumer goods sector for years, mainly for picking and packing purposes. They can function at a very high speed and have good repeatability, so they are a good choice for the assembly of electrical components.

Cartesian robots work on only three axes, but are smaller, simpler, and cheaper than other manufacturing robots. Cartesians may be a good fit for smaller businesses, who have limited production space and have to consider a more multipurpose or customisable robot.

Testing, testing

Robots are not only great for manufacturing, they can also help in the inspection of products. Robots that feature mounted cameras can check electronics to ensure they have been assembled correctly with no issues with the alignment or soldering. Automated optical inspections (AOI) and automated x-ray inspections can be performed with these robots. If an arm mounted with an infrared camera is used, it can check hotspots on a circuit board or other thermal issues with the circuitry.

There is a distinct possibility that the future holds even further automation, and with the current shortage in electronic components many manufacturers hope that this will go some way to helping production.

Lantek are specialists in hard-to-find and obsolete components. If you’re struggling for stock or want to check out what electronic components we can supply to you, contact us at sales@lantekcorp.com. Or use the rapid enquiry form on our website.

Categories
Electronic Components

NXP Announces i.MX 9 and i.MX 8 processor line for Intelligent Multi-sensor Applications

NXP announces i.MX8 and 9 processor line for multi-sensor applications

NXP Semiconductors has announced a new line of edge processors that deliver a giant leap in performance and security at the edge.

As edge computing rapidly evolves around us and demand for edge computing soars, performance demands are increasing at an exponential rate. This requires a new approach to security, power consumption and performance. Existing edge processors offer a solution now but are not ready for the next generation of real-time data.

Technologies like machine learning, artificial intelligence, robotics, autonomous driving and next-gen wireless infrastructure all depend on the edge. NXP Semiconductors is meeting the challenge with new i.MX 9 and i.MX 8 processor lines.

i.MX 8ULP and i.MX 8ULP-CS

The ultra-low power i.MX 8ULP and i.MX 8ULP-CS (cloud secured) Microsoft Azure Sphere-certified processors have the EdgeLock secure enclave, a pre-configured security subsystem that simplifies complex security technologies and helps designers avoid costly errors. It automates the following security functions:

  • Root of trust
  • Run-time attestation
  • Trust provisioning
  • Secure boot
  • Key management
  • Cryptographic services

The i.MX 8ULP-CS is Microsoft Azure Sphere-certified with Microsoft Pluton enabled on EdgeLock for highly secure hardware. With Azure Sphere, it has chip-to-cloud security built in, enabling use in a wide range of applications.

Both i.MX processors utilise Energy Flex architecture, which delivers as much as 75% improved energy efficiency compared to previous generations.

They have heterogeneous domain processing and 28nm FD-SOI process technology, making them among the most advanced edge chips in the world. The processors have one or two 1GHz Arm Cortex-A35 processors, a 216MHz Cortex-M33 real-time processor and a 200MHz Fusion DSP for low-power voice and sensor hub processing.

Every Azure Sphere-certified i.MX 8ULP-CS device also gets ongoing OS and security improvements for over ten years.

i.MX 9

The i.MX 9 series is NXP Semiconductors’ range-topping high-performance edge processor for intelligent multi-sensor applications.

The i.MX 9 debuts a new generation of processors that have an independent MCU-like real-time domain and dedicated multi-sensory data processing engines for graphics, image, display, audio and voice. The i.MX 9 series also features EdgeLock secure enclave, Energy Flex architecture and hardware neural processing.

The i.MX 9 is for the next generation of edge computing applications including machine learning and artificial intelligence. It’s the first NXP line to use the Arm Ethos U-65 microNPU which enables low-power machine learning.

Importantly, Azure Sphere chip-to-cloud security is enabled within the i.MX 9 line, providing a clear upgrade path from the i.MX 8 series.

EdgeLock secure enclave is the big ticket item of the new processor lines, combining complex security technologies into a single pre-configured platform. With device-wide security intelligence, it provides a simplified path to certification, enabling non-stop trusted management services and applications.

So what?

With the release of these new processors, organisations of any size can now pursue IoT development and real-time technologies with the confidence that NXP and Microsoft have laid out a foundation of security via Microsoft Azure. The low-power requirements and chip-to-cloud security deliver innovation in the right areas.