Categories
Electronic Components

Supply chain adaptability

Connectivity within our supply chain is a positive thing. It has given us access to resources from all over the world, boosting production and sourcing. However, covid and other factors have highlighted the risk that comes with having a globally connected supply chain.

If covid was the only concern, though, the supply chain would have recovered by now. The general increase in supply and demand has also left the industry struggling to catch up.

If there is a disruption to one area of the supply chain, this is then passed down the line to customers. At every step of the supply chain, the delays are exacerbated and impacts the economy.

Connectivity and interdependence have always been essential in the electronics industry, whether it is relying on other countries for materials or working with international foundries on production.

Certain countries had, and some still have, covid-related restrictions in place to stop the potential spread. This means that plants in those countries have had difficulty keeping up with demand. As one of the biggest exporters of electronics is also in this position, some countries are choosing to transition away from working with them.

Some large companies have already made the decision to move their base of operations to mitigate this risk in the future. This has the potential to massively shift industry dynamics and encourage other businesses to make similar moves.

Funding is being allocated by some governments to facilitate nearshoring or reshoring of companies, which would bolster the supply chain. Many countries, including the US, UK and India, are increasing the budget and support of domestic chip production. There will be several ongoing effects from this, including an increase in skilled workers, R&D and more in-house production.

Although this would be beneficial there would still need to be materials sourced from countries including places in turmoil. Even relocating a percentage of the supply chain will not resolve these sourcing conundrums. However, it would reduce shipping times and customs charges for the finished product, especially if production is closer to customers.

As much as it would be beneficial to reshore or nearshore production, it comes with certain risks. The cost of labour varies largely depending on location, as does the number of skilled workers. Additionally, the delay or difficulties associated with moving production halfway around the world will also be numerous.

Many countries have put measures and funds in place to encourage moves, but financial aid will only reach so far.

More than a long-term static solution, the supply chain needs to be flexible and adaptable. Supply, demand, and the world in general is very volatile right now. As such, suppliers and manufacturers will have to alter their ways of working accordingly.

Lantek has the rare advantage of being able to source electronic components from all over the world. This, combined with our keen eye and careful inspection processes, means we can find and supply the components you need.

Call today on 1-973-579-8100 to speak to a member of our sales team, or contact us at sales@lantekcorp.com

Disclaimer: This blog is meant purely for educational or informational purposes and is in no way instructional.

Categories
Electronic Components

3D printing of electronic components

We talk a lot about the ways modern technology are a benefit to the electronics industry. There’s no better example of this than the ability to 3D print electronic components.

Print preview

The first 3D printer was invented in the 1980s, and used a technique called stereolithography (SLA). You might recognise the term from photolithography, a process used in the manufacturing of semiconductor wafers. Stereolithography is slightly different, it uses a laser to harden layers of photopolymer successively in a pre-defined shape. Photolithography is for etching patterns onto semiconductor wafers.

SLA is still the most commonly-used method of 3D printing. There are, however, other methods that have come into use, including digital light processing and liquid crystal display.

With the printing of components or circuits that can conduct electricity, special inks that contain conductive nanomaterials are required.

The process

First, a digital model of the desired component is required. This is referred to as a Computer Aided Design, or CAD model. Then a base layer of the material, usually thermoplastics, is formed using fused deposition modelling (FDM).

After this a trace is created, which is the little web of wiring you can see on a regular PCB. These traces need to be much thicker on a 3D-printed board because the nano-inks naturally carry more resistance than copper.

Once this is complete, the additional components of the board are added in layers until it is finished.

Why use 3D printing?

The process of retooling an entire factory setup versus uploading a different design to a single machine are vastly different. Retooling can be a costly and painstaking process, especially if you are manufacturing on a small scale or just prototyping.

The flexibility that comes with 3D printing is also an advantage. Where regular machinery may have limitations, 3D printing could have significantly fewer.

There would also be a reduction in the waste produced by the process. Most of the time, boards are manufactured and then the excess material is cut away. With 3D printing there would be remarkably less waste produced as it only prints what is needed.

3D printing of electronic components is currently used for small batches or for rapid prototyping, but in the future it could easily be used for more complex components and larger batches.

Just a reminder

Although Lantek does not specialise in 3D printers, we do specialise in electronic components of all kinds, and can supply stock as and when you need it. Make Lantek your electronic component supplier.

This blog is meant for informational purposes only and is in no way instructional.

Categories
Electronic Components

India increasing chip manufacture

In recent years India has been increasing its share in the electronics industry, planning to become a hub in the future.

Currently India has a lot of dependence on imported chips, heavily relying on the Chinese supply chain. One of its goals is to be, in part, autonomous in its chip production. The supply chain issues brought about by covid and other global factors really highlighted this.

But it is not easy to just move production of something so complicated to another country. It would require massive amounts of funding to reshore production.

Make in India

In 2021 the Indian government announced funding equal to $10 billion to improve domestic production over the next 5 years. Several companies have put in bids for the funding, including Vedanta, IGSS Ventures, and India Semiconductor Manufacturing Corp.

The funding is part of the Government of India’s ‘Make in India’ plan, encouraging investment and innovation in the country. Prime Minister of India Narendra Modi announced the initiative in 2014, focusing on 25 sectors including semiconductors and automobiles.

Domestic reliance

One of India’s goals is to move away from reliance on imports, on which they currently spend $25 billion annually. Only 9% of India’s semiconductor needs are met domestically. If production is reshored in part, this would increase local jobs and income for the country.

As it stands, India currently has more of a focus on R&D but don’t have fabs for assembly and testing. The nearby Singapore and manufacturing powerhouse Taiwan provide most of its current stock.

A change in the air, and in shares?

The recent approval of the Chips Act in the US means there may be a shift in industry shares. At the moment America has a 12% share, but if production is re-shored this may impact the Asian market.

However, India and the US, alongside the UAE and Israel plan to form an alliance. With financial aid from the bigger players, the alliance plans to focus on infrastructure and technology.

India was the US’s 9th largest goods trading partner in 2021, with $92 billion in goods trade in 2019. India is also the EU’s 10th largest trading partner, but with domestic semiconductor industry growth this might change.

India’s end equipment market revenue was $119 billion at the end of 2021. Its annual growth rate is predicted to be 19% in the next 5 years.

India is aware of the importance of the semiconductor industry, and set up an India Semiconductor Mission (ISM) in 2021. Its goal is to create a reliable semiconductor supply chain, and to become a competitor against giants like the US.

Relish the competition

India’s potential in the semiconductor industry is increasing, and there is likely to be more investment in the future. It is difficult to tell how much further down the line it would be before India becomes a competitor, but the coming years are sure to be interesting.

Categories
Electronic Components

The effect of AI on the electronics supply chain

AI and machine learning technology is improving all the time and, consequently, the electronics industry is taking more notice. Experts predict that the application of AI in the semiconductor industry is likely to accelerate in the coming years.

The industry will not only produce AI chips, but the chips themselves could be harnessed to improve the efficiency of the electronic component supply chain.

What’s included

In an AI chip there is a GPU, field-programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) specialized for AI.

CPUs were a common component used for basic AI tasks, but as AI advances they are used less frequently. The power of an AI depends on the number and size of transistors it employs. The more, and smaller, the transistors, the more advanced the AI chip is.

AI chips need to do lots of calculations in parallel rather than sequentially, and the data they process is immense.

Think about it

It’s been proposed by some that designing AI chips and networks to perform like the human brain would be effective. If the chips acted similarly to synapses, only sending information when needed, instead of constantly working.

For this use, non-volatile memory on a chip would be a good option for AI. This type of memory can save data without power, so wouldn’t need it constantly supplied. If this was combined with processing logic it could make system on a chip processors achievable.

What is the cost?

Despite the designs being created for AI chips, production is a different challenge. The node size and costs required to produce these chips is often too high to be profitable. As structures get smaller, for example moving from the 65nm node to the latest 5nm, the costs skyrocket. Where 65nm R&D cost $28 million, 5nm costs $540 million. Similarly with fab construction for the same two nodes, price increased from $400 million to $5.4 billion.

Major companies have been making investments into the R&D of AI chip infrastructure. However, at every stage of the development and manufacturing process, huge amounts of capital are required.

As AI infrastructure is so unique depending on its intended use, often the manufacturers also need to be highly specialized. It means that the entire supply chain for a manufacturer not yet specialized will cost potentially millions to remodel.

Beauty is in the AI of the beholder

The use of AI in the electronics industry could revolutionize how we work, and maximize a company’s profits. It could aid companies in supply forecasts and optimizing inventory, scheduling deliveries and so much more.

In every step of the electronics supply chain there are time-consuming tasks that AI and machine learning could undertake. In the sales stage, AI could assist with customer segmentation and dynamic pricing, something invaluable in the current market. It could additionally prevent errors in the manufacturing process and advance the intelligence of ICs and semiconductors manufactured.

Artificial intelligence

We’re not quite at the stage where AI has permeated throughout the industry but it’s highly likely that it will in the coming years. That said, this blog post is all speculation and is in no way to inform decisions.

Lantek can provide all types of electronic components, no matter what you’re building. See how we can help you by getting in touch today. Contact us at sales@lantekcorp.com, or use the rapid enquiry form on our website to get results fast.

Categories
component shortage Electronic Components

Automotive electronics market set to grow

With vehicles getting smarter, more connected and more autonomous, the automotive electronics market looks set to soar.

Future growth in numbers

Back in March, Precedence Research predicted the automotive electronics market would hit around US$ 640.56 billion by 2030.

Then, in July, Global Market Insights released research predicting the automotive electronics market would hit around US$ 380 billion by 2027.

Interestingly, measured across the same period, both research reports (which are independent) predict a similar growth pattern. Global Market Insights predicts a 6% CAGR, while Precedence Research predicts a CAGR of 7.64% over a 3-year longer period.

With two separate reports indicating significant annual growth. The automotive electronics market looks set to boom. But wait, there’s more.

A 9.3% CAGR is expected in the automotive electronics market by 2030, according to research by P&S Intelligence. They predict slightly less growth than Precedence Research to 2030, at US$ 615.3 billion (versus $640.56 billion).

Growth factors

There are approximately 1,400 chips in a typical vehicle today. Which each chip housing thousands of components on a semiconductor wafer, creating integrated circuits that power computing, memory, and a host of other tasks.

Those are just the chips.

Cars have thousands of other electronic components, including passive, active and  interconnecting electronic components. From batteries, sensors and motors, to displays and cameras. Oh, and everything is connected.

All told, a typical car today has more than 50,000 electronic components that enable features like in-car Wi-Fi, self-parking technology, adaptive headlights, semi-autonomous driving technology, keyless entry, and powered tailgates.

However, cars are getter smarter and more advanced. Electronic components today make up around a third the cost of a car, which will increase over time as more sophisticated and greater numbers of components are used.

Smarter cars need more components  

The future of cars involves electrification, autonomous and self-driving technologies, hyperconnectivity, Internet of Things, augmented reality, artificial intelligence, biometrics and a whole host of next-generation technologies.

How will these be enabled? With electronic components.

Let’s take electrification as an example. An electric car handbook will tell you an electric car has a motor, a battery, an on-board charger, and an Electronic Control Unit (ECU) that controls one or more of the electrical systems or subsystems in the vehicle. Together, these let you drive around, charge, and pop to the shops.

In-between these systems, are hundreds of thousands of electronic components that make them work. You see, an Electronic Control Unit is a single component, containing thousands of smaller components, each performing a critical role.

The automotive electronics market is set to soar because cars and other vehicles will need more components with electrification and next-gen technologies. Sometimes, things can be simple to explain, and this is one of those times.

Meeting demand

The electronics industry is facing a global chip and electronic component shortage which is expected to last 2-3 years. As demand for automotive electronics soars, shortages look very likely for certain components like CPUs and memory.

The solution for many companies will be to use an electronics component distributor, to fill gaps in the supply chain and keep things moving.

Electronic component distributors like Lantek can source hard-to-procure components because we have relationships with the best suppliers in the industry. Contact us today with your inquiries at sales@lantekcorp.com or call 1-973-579-8100

Categories
Electronic Components Environment

How Lantek help tackle environmental issues in the electronics industry

There’s no industry as polarising as the electronics industry when it comes to the environment. This is the industry that generates 70% of all toxic waste on the planet, yet it’s also the industry that’s pioneering renewable energy to address climate change.

The best way to look at the electronics industry from an environmental point of view is as a work in progress. We know that the industry is facing several environmental challenges now and in the future. The question is, how should we respond to them?

We are a global electronic component distributor, supplying electronic components to global customers. Our position in the industry has given us a unique perspective of the environmental challenges it faces. In this article, we’ll discuss some of the challenges we are facing and how we are addressing them.

Improper component storage

One of the biggest problems in the electronics components industry is the lack of environmentally-controlled storage facilities.

The biggest danger to electronic components is humidity which has to be controlled to ensure the components do not degrade. Problems like moisture absorption and contact corrosion have to be considered in storage.

Lantek only operates environmentally-controlled storage facilities. Our facilities are designed to ISO 9001 standards. ISO 9001 is the international standard that sets out the requirements for a quality management system.

Delivery emissions

Electronic components and electronic devices are shipped via land, sea and air. Some packages find their way in transit covering several countries in a single day. This generates unavoidable emissions as a natural by-product of operating.

These emissions can be reduced or offset in a few ways. The simplest way is to always use the most efficient transit methods and logistics firms that offset their emissions. This means the sender doesn’t have to offset their own emissions.

We go with this method because it allows us to meet our environmental obligations while also ensuring a high-quality delivery service.

Electronic waste (e-waste)

Electronic waste is the biggest issue facing the electronics industry. Only around 20% of e-waste is recycled each year. The rest enters landfill. It accounts for 70% of all toxic waste on the planet, which is an astonishing figure.

Lantek is helping to reduce the amount of electronic waste that enters landfill by putting components that would otherwise enter landfill back into use.

You’d be surprised by the number of components we save that are new old stock. We save hundreds of thousands of components each year. Many of these are rare legacy electronic components that are no longer being made.

Looking ahead

The electronics industry gave you the smartphone in your hand and the internet that connects you to this article. There’s no denying it’s an immeasurably valuable industry and our future will have more technology. That’s a certainty.

As civilisation becomes more reliant on technology, we will develop technologies that address the industry’s biggest environmental challenges. In particular, we hope to see a significant reduction in e-waste and emissions soon. For now, the future is what we make of it, and we’re optimistic about what the future holds.