Categories
Electronic Components

The effect of AI on the electronics supply chain

The effect of AI on the electronics supply chain

AI and machine learning technology is improving all the time and, consequently, the electronics industry is taking more notice. Experts predict that the application of AI in the semiconductor industry is likely to accelerate in the coming years.

The industry will not only produce AI chips, but the chips themselves could be harnessed to improve the efficiency of the electronic component supply chain.

What’s included

In an AI chip there is a GPU, field-programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) specialized for AI.

CPUs were a common component used for basic AI tasks, but as AI advances they are used less frequently. The power of an AI depends on the number and size of transistors it employs. The more, and smaller, the transistors, the more advanced the AI chip is.

AI chips need to do lots of calculations in parallel rather than sequentially, and the data they process is immense.

Think about it

It’s been proposed by some that designing AI chips and networks to perform like the human brain would be effective. If the chips acted similarly to synapses, only sending information when needed, instead of constantly working.

For this use, non-volatile memory on a chip would be a good option for AI. This type of memory can save data without power, so wouldn’t need it constantly supplied. If this was combined with processing logic it could make system on a chip processors achievable.

What is the cost?

Despite the designs being created for AI chips, production is a different challenge. The node size and costs required to produce these chips is often too high to be profitable. As structures get smaller, for example moving from the 65nm node to the latest 5nm, the costs skyrocket. Where 65nm R&D cost $28 million, 5nm costs $540 million. Similarly with fab construction for the same two nodes, price increased from $400 million to $5.4 billion.

Major companies have been making investments into the R&D of AI chip infrastructure. However, at every stage of the development and manufacturing process, huge amounts of capital are required.

As AI infrastructure is so unique depending on its intended use, often the manufacturers also need to be highly specialized. It means that the entire supply chain for a manufacturer not yet specialized will cost potentially millions to remodel.

Beauty is in the AI of the beholder

The use of AI in the electronics industry could revolutionize how we work, and maximize a company’s profits. It could aid companies in supply forecasts and optimizing inventory, scheduling deliveries and so much more.

In every step of the electronics supply chain there are time-consuming tasks that AI and machine learning could undertake. In the sales stage, AI could assist with customer segmentation and dynamic pricing, something invaluable in the current market. It could additionally prevent errors in the manufacturing process and advance the intelligence of ICs and semiconductors manufactured.

Artificial intelligence

We’re not quite at the stage where AI has permeated throughout the industry but it’s highly likely that it will in the coming years. That said, this blog post is all speculation and is in no way to inform decisions.

Lantek can provide all types of electronic components, no matter what you’re building. See how we can help you by getting in touch today. Contact us at sales@lantekcorp.com, or use the rapid enquiry form on our website to get results fast.

Categories
Electronic Components

Procurement executives concerned about digital innovation

Procurement executives concerned about digital innovation

Manufacturers are using digital advancements to battle current supply chain disruptions.

Almost all (97%) of those surveyed said they had significant disruptions in their direct materials supply chain.

67% said they were not confident that the technology can cope with the current or near-future challenges.

The most significant technology disadvantages seem to come with lack of visibility into supplier, ‘disjointed’ source-to-pay process with multiple systems, and a lack of spend reporting.

Even more (87%) said modernising the manufacturing procurement and supply chain takes precedence, and it is their biggest challenge yet. A further 92% said avoiding disruptions to their supply chain is their main goal for this year.

The main issues

Among the main concerns for modernising the supply chain are potential disruptions during implementation, skills shortages, and scale and challenge of change management.

Around half of those surveyed (44%) predicted that the supply chain crisis would begin to calm by 2023. Significantly less (18%) thought it would reduce by the end of this year.

The study surveyed 233 senior procurement executives from US and UK manufacturing companies. It was commissioned by Ivalua, a spend management cloud provider.

See the original press release from Ivalua here.

Analysis

While Covid-19 was seen as a factor in the supply chain instability, it was not the only culprit. Global supply chains had already been in a vulnerable position, partly due to factors like too much outsourcing and an overreliance on ‘just-in-time’ supply management.

What some are calling ‘outdated technologies’ are slowly being replaced in Industry 4.0. However, the implementation of tech like IoT, AI, machine learning and cloud computing is not a quick process.

The issue may be that this transition period would only further add to the current shortages rather than solving them in the short-term. Most companies are being deterred by this potential loss, and have been avoiding the change for as long as possible.

Whenever digital innovation comes, it will be a gradual and time-consuming process, but businesses will be better off for it.

Categories
Electronic Components

Communications including 5G will drive the components market

Communications including 5G will drive the components market

According to IC Insights, the communication sector’s share of integrated circuit sales reached 35% in 2020 and is expected to grow to 36.5% by 2025. For perspective, the automotive sector’s share of integrated circuit sales was 7.5% in 2020 and will grow to 9.8% by 2025 – significantly less than communications.

Industry tailwinds

What’s driving such high demand for ICs in the communications sector?

There are four big tailwinds:

  • 5G
  • Edge computing
  • Internet of Things
  • AI (artificial intelligence), MI (machine learning) and data analytics

5G

5G is the main driver for component demands with 5G infrastructure rollout happening slowly, but surely. We are nowhere near a complete version of 5G, and networks are in a race against time to deliver a reliable service.

The first step for networks is replacing low-band 4G spectrum, followed by mid-band spectrum that uses 2.5, 3.5 and 4.5 GHz, enabling faster data speeds. The final step is the rollout of millimetre wave, which enables true 5G speeds. Millimetre wave also happens to be a precursor for next generation 6G.

On top of 5G infrastructure rollout you have more 5G-enabled devices coming to market, such as smartphones, tablets, and laptops. Smartphones. in particular, are leading the way for 5G adoption, putting faster data in our hands.

The rapid growth in IC demand in the communications sector also stretches to other components like modems, memory, and antennas. 5G isn’t just an IC boon – it’s a boon for all the electronic components needed for 5G. 

Edge computing

Second to 5G we have edge computing, which by a miraculous twist of fate is needed to deliver a 5G experience (and needs a whole lot of components).

Edge computing puts computing capabilities relatively close to end users and/or IoT endpoints. In doing so, it reduces latency, while 5G delivers faster data speeds, providing a seamless experience on certain devices.

Internet of Things

IoT describes a network of connected smart devices that communicate with each other. For example, a vital sign monitor in a hospital could communicate with medicine dispensers and automate medicine dosages for doctors.

The Internet of Things has been talked about as a trend for several years, but we now have real applications that are useful.

AI (artificial intelligence), MI (machine learning) and data analytics

AI (artificial intelligence), MI (machine learning) and data analytics require enormous, powerful data centres to power them. These data centres require significant investment in chips, memory, and other electronic components.

Also, AI, MI and data analytics need cloud computing, edge computing and in some cases 5G to deliver a real-time experience.

The future

By 2025, the communications sector is forecast to have a 36.5% usage share of integrated circuits, making it the biggest consumer of semiconductors.

Demand for integrated circuits, discrete circuits, optoelectronics and sensors will grow to an all-time highs thanks to the industry tailwinds in this article. The future is bright, but to stay ahead, a robust supply chain will be needed.

Electronic components distributors like Lantek Corporation are helping supply the demand, while the communications sector battles to secure chip orders.

Categories
component shortage Electronic Components

Component Prices Rise 10% to 40% – But why?

Component Prices Rise 10% to 40% - But why?

While component price increases are expected when demand surpasses supply, the scale of recent increases has come as a shock to many businesses.

In its Q3 Commodity Intelligence Quarterly, CMarket intelligence platform Supplyframe reports that some electronic components have seen prices rise by as much as 40%, making it uneconomical for products to be made.  

Specifically, semiconductors, memory and modems are seeing 10 to 40% price increases, exceeding what most analysts envisioned for 2021.

Why are prices rising?

Price rises start with materials. There are long lead times for many raw materials, causing shortages. Add rising commodity prices and difficulties transporting products and you have a disrupted manufacturing economy.

You also must factor in the impact of the coronavirus pandemic, which has caused labor shortages and disrupted the manufacturing economy with shutdowns.

Logistics is also a big fly in the ointment for electronic components. The industry is recovering from COVID-induced shutdowns and travel restrictions are causing problems at borders, creating delays that ripple through the supply chain.

Supply and demand

The bulletproof economics of supply and demand also rule the roost for electronic components, and demand is higher than it has ever been.

We are in a situation today where most electronic components manufacturers are running at 99-100% capacity and can’t keep up with demand.

Demand is outstripping supply for chips, memory and communications components like integrated circuits, discrete circuits, optoelectronics, and sensors creating a bidding war as manufacturers scramble to get what they need.

Growing demand for new technologies

Emerging technologies like artificial intelligence, machine learning, virtual reality, augmented reality, and edge computing are fuelling demand for smarter chips and data center modernization, while technologies like 5G and Wi-Fi 6 are demanding infrastructure rollout, which requires significant investment.

Across the board, technology is booming. Manufacturers are making more products for more people, and they must do so while balancing costs at a time when component prices are rising – no easy feat even for established businesses. 

Pressure relief

Everyone is raising prices in line with their own cost increases, from semiconductor manufacturers to outsourced fabs and suppliers. At 10 to 40%, these increases are putting pressure on supply chains and businesses.

How many price increases will target markets absorb? How can we sustain production without significant margin pressure? These are the challenges facing manufacturers, who are stuck between a rock and a hard place right now.

There are a few solutions:

  • Equivalents: Source equivalent components from different brands/makers/OEMs that meet size, power, specification, and design standards.
  • Use an electronic components distributor: Distributors are the best-connected players in the industry, able to source hard-to-procure and shortage components thanks to relationships with critical decision makers.

Prices will fizzle down, eventually

Although research published by Supplyframe says pricing challenges will remain through early 2023, they won’t last forever. Price rises should fizzle out towards the end of 2021 as manufacturers catch up to orders and reduce disruption.

If you are experiencing an electronic component shortage, we can help. Email us at sales@lantekcorp.com if you have any questions or call us at 973-579-8100 to talk with our team.

 

 

 

Categories
component shortage Electronic Components

Perfect storm’ creates electronic component shortages

Perfect storm' creates electronic component shortages

A perfect storm has hit the electronic components market, creating supply chain problems that will be felt for several years.

The perfect storm

Even before the COVID-19 pandemic, most electronic component manufacturers were running at 95-98% capacity.

This high demand for electronic components was fuelled by growth in technologies like automation and the Internet of Things – technologies that are only in their infancy now but will mature in the next decade.

This high manufacturing output was felt across all types of components, especially chips (semiconductors, memory) and integrated circuits. It was even difficult to get a hold of some active and passive components in 2019.

Then, in 2020, the COVID-19 pandemic hit. Car manufacturers and other manufacturers affected by shutdowns paused orders for electronic components. Meanwhile, manufacturers benefitting from lockdowns scaled up.

Now, with the development and roll-out of COVID-19 vaccines, industries that shut down have opened up again. But there’s a problem – demand for electronics has not wavered and there isn’t enough manufacturing capacity to serve everyone.

Quite simply, there isn’t enough bread to go around.

Demand is ramping up

We are now in a situation where electronic components manufacturers are running at 99-100% capacity. Demand has soared for all types of components, from chips and memory to diodes and displays. This is squeezing most supply chains.

There are so many contributors to this squeeze. Emerging technologies like AI, automation, virtual reality, augmented reality and machine learning are fuelling demand for smarter chips and data centre modernization, while technologies like 5G and Wi-Fi 6 are demanding infrastructure rollout, which requires a significant effort.

When it comes to chips, however, cars are the biggest users. Cars can have as many as 22,000 multilayer ceramic capacitors (MLCCs) each. This will increase as cars get smarter (a self-driving taxi sounds great, but it’ll need around 30,000 chips).

Suppliers are slowly adapting

There has been years of under-investment in new foundries and plants. This under-investment has affected manufacturing capacity today.

To their credit, most manufacturers are looking to expand capacity by setting up new foundries or acquiring plants. Trouble is that most plants take years to set up. Some plants that started a build in 2017 are still being built.

Staffing is also an issue. The biggest challenge suppliers face is social distancing and COVID prevention policies, which have reduced staff numbers in many factories.

You can’t automate every process in a factory, so it is a given that having fewer staff will increase lead times. Some manufacturers have been harder hit than others with this, but all will experience staff shortages during the pandemic.

In addition to this, freight has become more challenging during the pandemic. Things are taking longer to move and there are fewer commercial flights. Global shipping rates have skyrocketed during the pandemic because of this. Higher shipping rates have contributed to price increases for most electronic components.

Weathering the storm

We predicted the electronics component shortage in early 2020 following the USA’s national lockdown. We knew supply chains would be squeezed and stretched due to changes in economic output and industry trends.

The best way to weather the storm is to work with us or another reputable electronic components distributor. We focus on delivering outstanding service, with industry leading quality and dependability. Call us at 001 973 579 8100 to chat.