Categories
Electronic Components Supply Chain

US Japan critical minerals agreement

US Japan critical minerals agreement

The US and Japan agreed last week to strengthen their supply chains of critical minerals like cobalt, lithium and nickel.

The agreement

In the agreement, signed on March 28, the partners agreed to not impose export duties between the US and Japan on critical minerals. They also said they would take action to address non-market policies of other countries that impact the critical minerals trade.

As the US diversifies its trading partners, they risk further complications in its critical minerals supply chain.

As part of the agreement the investments made by foreign powers in the industry will be reviewed. The allies will also upgrade their
information-sharing and enforcement in relation to labor rights violations.

Trade Representative for America Katherine Tai said Japan was a valued trading partner. She said the partnership
was a welcome moment to strengthen the critical minerals supply chain.

Japan’s Ambassador to the US, Tomita Koji, added that securing critical minerals was vital. This, he said, was partly due to the
increased demand for electric vehicles and the batteries powering them.

Partners

The two countries made other trade agreements in relation to the semiconductor industry. The countries made an agreement in July last year to create a joint research center for next-generation semiconductors.

The agreement was brought in for similar reasons, to soften America’s relationship China.

The US and Japan said during the launch that they want to establish supply chain resilience in the sector, and said they would build a strong battery supply chain.

Are you looking for a partner?

 

Lantek is a company that always puts its customers’ needs first. We will work with you to make sure we source all the electronic
components you’re looking for. Contact us today on 1-973-579-8100 or via email at sales@lantekcorp.com

Categories
Electronic Components

One week until Electronica!

One week until Electronica!

This year one of the largest electronics trade fairs in the world is taking place in Munich, Germany.

Lantek founder has been attending Electronica since it first began, so the convention has always been a highlight of our calendar. We have met many clients and partners through the connections provided to us by Electronica.

The convention is focusing on the promotion of sustainability this year. Bringing the industry together in one location with the aim of “Driving Sustainable Progress”, Electronica hopes to show the role the world that electronics will help, not hinder, sustainability.

The previous Electronica in 2020 was purely virtual, but having hundreds of exhibitors back in Messe München, spread over 13 halls, will be an event to remember.

 In 2018 there were more than 81,000 visitors to the trade fair from 101 countries. 3,124 exhibitors attended the event, we’re hoping for an even more enthusiastic turnout this time around.

In 2021 there was a 9.8% increase in industry revenue from the previous year, at €200 billion, which is astounding progress during the pandemic.

Electronica will have a supporting program full of knowledge and professional talks. During conferences experts will analyse market activity.

The convention has been held every other year since 1964, and has continually grown and evolved over the years.

In the final week leading up to the trade fair, we want to organise meetings with all our clients who are also attending. Whether you are a returning or new customer, we want to show you what Lantek can do for you.

We have the expertise and drive to go the extra mile for you. Whether you are looking to buy or sell, Lantek has a solution for you.

Whether you are a returning customer or are completely new to Lantek, we want to meet you. If you are attending Electronica you can book an appointment with our staff to discuss your needs at Eventbrite now.

Categories
Electronic Components

How transistors replaced vacuum tubes

How transistors replaced vacuum tubes

Electronics has come on leaps and bounds in the last 100 years and one of the most notable changes is the size of components. At the turn of the last century mechanical components were slowly being switched out for electrical ones, and an example of this switch was the vacuum tube.

A lightbulb moment

Vacuum tubes were invented in the early 1900s, and the first ones were relatively simple devices containing only an anode and a cathode. The two electrodes are inside a sealed glass or aluminium tube, then the gas inside would be removed to create a vacuum. This allowed electrons to pass between the two electrodes, working as a switch in the circuit.

Original vacuum tubes were quite large and resembled a lightbulb in appearance. They signalled a big change in computer development, as a purely electronic device replaced the previously used mechanical relays.

Aside being utilised in the field of computing, vacuum tubes were additionally used for radios, TVs, telephones, and radar equipment.

The burnout

Apart from resembling a bulb, the tubes also shared the slightly more undesirable traits. They would produce a lot of heat, which would cause the filaments to burn out and the whole component would need to be replaced.

This is because the gadget worked on a principle called thermionic emission, which needed heat to let an electrical reaction take place. Turns out having a component that might melt the rest of your circuit wasn’t the most effective approach.

The transition

Transistors came along just over 40 years later, and the vacuum tubes were slowly replaced with the solid-state alternative.

The solid-state device, so named because the electric current flows through solid semiconductor crystals instead of in a vacuum like its predecessor, could be made much smaller and did not overheat. The electronic component also acted as a switch or amplifier, so the bright star of the vacuum tube gradually burned out.

Sounds like success

Vacuum tubes are still around and have found a niche consumer base in audiophiles and hi-fi fanatics. Many amplifiers use the tubes in place of solid-state devices, and the devices have a dedicated following within the stereo community.

Although some of the materials that went into the original tubes have been replaced, mostly for safety reasons, old tubes classed as New Old Stock (NOS) are still sold and some musicians still prefer these. Despite this, modernised tubes are relatively popular and have all the familiar loveable features, like a tendency to overheat.

Don’t operate in a vacuum

Transistors are used in almost every single electronic product out there. Lantek have a huge selection of transistors and other day-to-day and obsolete components. Inquire today to find what you’re looking for at sales@lantekcorp.com or use the rapid enquiry form on our website.

Categories
Electronic Components

Electronic component market to see continued growth by 2027

Electronic component market to see continued growth by 2027

The electronic component market is set to see continued growth over the next five years, with projections estimating greater demand than ever.

Several forecasts have converged with the same conclusion; demand for components is set to rocket as the world adopts more advanced technologies. 

This article will explore the latest research papers and market analysis from reputable sources. We will also explore why the demand for electronic components is set to soar and the supply chain’s challenges. 

Global components market 

The market analysis covered by Market Watch predicts that the global electronic components market will reach USD 600.31 billion by 2027, from USD 400.51 billion in 2020, a compound annual growth rate of 4.7% from 2021. 

Active components market 

Another market report, this time looking at active electronic components, predicts the active electronic components market will reach USD 519 billion by 2027 (£380bn pounds, converted 12/01/22), a CAGR of 4.82% from 2021. 

Passive and interconnecting components market 

According to 360 Research Reports, the passive and interconnecting electronic components market is projected to reach USD 35.89 billion in 2027, up from USD 28.79 billion in 2020, a compound annual growth rate of 3.2% from 2021. 

Semiconductor wafer market 

According to Research and Markets, the global semiconductor wafer market is predicted to reach USD 22.03 billion by 2027, rising at a market growth of 4.6% CAGR during the forecast period starting from 2021. 

Dynamic Random Access Memory (DRAM) market

Market Reports World predicts the global DRAM market will see extreme growth, growing at a CAGR of 9.86% between 2021 and 2027. The market was valued at USD 636.53 million in 2021 and will grow to nearly USD 700 million by 2027.  

Why is component demand set to increase so much?

The world is undergoing an extreme technological transformation that began with the first computers. Today, electronics are everywhere, and they are becoming ever more intricate and complex, requiring more and more components. 

Several technologies are converging, including semi-autonomous and electric vehicles, automation and robotics, 5G and internet upgrades, consumer electronics, and smart home appliances like EV chargers and hubs. 

This is a global transformation, from your house to the edge of the earth. Electronic components are seeing unprecedented demand because smarter, more capable devices are required to power the future. 

What challenges does the supply chain face? 

The two biggest challenges are shortages and obsolescence. 

Shortages are already impacting supply chains, with shortages of semiconductors, memory, actives, passives, and interconnecting components. 

As demand increases, supply will struggle to keep up. It will be the job of electronic components suppliers like Lantek and electronic component manufacturers to keep supply chains moving while demanding increases. 

Obsolescence refers to electronic components becoming obsolete. While some electronic components have lifespans of decades, others are replaced within a few years, which puts pressure on the supply chain from top to bottom. Email your inquiries to us today at sales@lantekcorp.com. Our specialized team is here to help.

In any case, the future is exciting, and the electronic components market will tick along as it always does. We’ll be here to keep oiling the machine. 

Categories
component shortage Electronic Components

Semiconductor Supply Chain Will Remain Vulnerable Without Robust Investment in Advanced Packaging

Semiconductor supply chain will remain vulnerable without advanced packaging investment

new U.S. study has found that the advanced semiconductor packaging supply chain needs strengthening to meet the increasing demand for chips.

According to the report, without robust federal investment, the semiconductor supply chain in the U.S. faces an uphill battle to meet demand.

The study also highlights the crucial role of advanced packaging in driving innovation in semiconductor designs. At present, most of the chips in the U.S. are sent abroad for packaging and assembly into finished products. By moving packaging to North America, the entire electronics ecosystem can be improved.

The big players in the U.S. include Applied Materials, Amkor Technology, Ayar Labs, Lam Research, Microsemi Semiconductor and KLA-Tencor Corporation. These companies have seen unprecedented demand for semiconductor packaging, with growth predicted to rise as the world becomes smarter and more connected.

Other report findings 

The study also found that while the U.S. can design cutting-edge electronics, it lacks the capabilities to make them. This is creating an overreliance on foreign companies, including companies in China, creating considerable risk.

Looking at the most recent data, the study highlights that North America’s share of global advanced semiconductor packaging production is just 3 per cent. In other words, at present, the U.S. is incapable of assembling its own chips.

The study concludes that the U.S. also needs to invest in developing and producing advanced integrated circuit substrates. Advanced integrated circuit substrates are crucial components for packaging circuit chips. Currently, the U.S. has nascent capabilities, putting it behind Europe, China and most other countries.

What can we deduce from the report? That the U.S. is behind in most aspects of semiconductor packaging. Decades of low investment and overseas partnerships have led to a manufacturing ecosystem devoid of domestic talent.

“The findings of this report make clear that, as a result of decades of offshoring, the United States’ semiconductor supply chains remain vulnerable, even with the new federal funding that’s expected,” says Jan Vardaman, president and founder of TechSearch International and co-author of the report. 

As the U.S. comes to terms with its poor manufacturing ecosystem, China is ramping up assembly plants. In the face of increasing competition, the U.S. must focus on domestic investment in the near and medium-term. Without robust investment, they could fall further behind and lose out to their biggest competitors.

Categories
Electronic Components Environment

How does recycling electronics help create sustainability within the industry?

How does recycling electronics help create sustainability within the industry?

Thanks to advancements in material science and recycling technologies, it’s possible to recycle around 80% of most new electronics. For example, the smartphone in your hand or pocket has around 80% recyclable components.

The most valuable components in electronics are rare and precious metals. The quantity of these metals in your phone is tiny but the number of phones (and other electronics) that enter landfill is huge. This creates a lucrative opportunity for recyclers to invest in processes that can extract the most valuable components efficiently.

Recycling in the electronics industry

Recycling electronics is important to not only reduce e-waste, but also our dependency on the mining and manufacturing of new materials. 

The electronics industry is at odds with environmentalists because the industry that’s pioneering solar and renewable energy technologies generates a lot of e-waste. You can’t have it both ways. If you want technology to fight climate change, it first has to advance to a point where it becomes neutral and self-sustained.

Mass recycling is the process that will enable this in the future. For now, it is a stop-gap to minimise the electronics industry’s impact on the environment. And it’s working, with 15% of e-waste recycled globally in 2019. This figure is rising by 2-3% per year. In 2030 we expect the global e-waste recycling rate to hit 50%.

European legislation requires every manufacturer and producer to arrange and finance the collection, treatment, recycling and disposal of WEEE (Waste Electrical and Electronic Equipment). This is a positive step. In the future, we want to see 100% recycling efficiency, although this will require different materials to those used today.

Excess inventory management

Another area of the electronics industry where recycling is important is excess electronic components. These components are not assigned for manufacturing and have no purpose in production. They take up space and are depreciating assets.

These components tend to be discarded and written off. However, recycling is not the best thing for them. The best thing for them is putting them back into production. The old phrase “One man’s trash is another man’s treasure” springs to mind.

This process is known as excess inventory management and it requires an electronic component distributor to purchase unwanted stockpiles of components. These stockpiles are then re-sold through a distribution network.

This provides a few benefits to the seller:

  • An instant, positive cash injection
  • Reduced stockholding costs
  • Reduced time spent managing surplus stock

For example, our excess inventory specialists purchase and manage stock that has been identified for disposition. This process turns unwanted electronic components into cash and introduces new revenue streams into existing businesses.

Where does excess inventory end up?

Most excess inventory ends up on the production line with manufacturers and OEMs to create new products. This puts the components into production and significantly increases the time from manufacture to end of life.

Other components can find no end user. In this case, the components are sent to specialist recycling centres who purchase the components as scrap. Around 10% of excess inventory is sent on for recycling. The majority enters production.