Categories
Electronic Components

Semiconductors in space

Semiconductors in space

Blast off

A post about semiconductors being used in space travel would be the perfect place to make dozens of space-themed puns, but let’s stay down to earth on this one.

There are around 2,000 chips used in the manufacture of a single electric vehicle. Imagine, then, how many chips might be used in the International Space Station or a rocket.

Despite the recent decline in the space semiconductor market, it’s looking likely that in the next period there will be a significant increase in profit.

What effect did the pandemic have?

The industry was not exempt from the impact of the shortage and supply chain issues caused by covid. Sales decreased and demand fell by 14.5% in 2020, compared to the year-on-year growth in the years previous.

Due to the shortages, many companies within the industry delayed launches and there was markedly less investment and progress in research and development. However, two years on, the scheduled dates for those postponed launches are fast approaching.

The decline in investment and profit is consequently expected to increase in the next five years. The market is estimated to jump from $2.10 billion in 2021 all the way up to $3.34 billion in 2028. This is a compound annual growth rate (CAGR) of 6.89%.

What is being tested for the future

In the hopes of ever improving the circuitry of spaceships there are several different newer technologies currently being tested for use in space travel.

Some component options are actually already being tested onboard spacecrafts, both to emulate conditions and to take advantage of the huge vacuum that is outer space. The low-pressure conditions can emulate a clean room, with less risk of particles contaminating the components being manufactured.

Graphene is one of the materials being considered for future space semiconductors. The one-atom-thick semiconductor is being tested by a team of students and companies to see how it reacts to the effects of space. The experiments are taking place with a view to the material possibly being used to improve the accuracy of sensors in the future.

Two teams from the National Aeronautics and Space Administration (NASA) are currently looking at the use of Gallium Nitride (GaN) in space too. This, and other wide bandgap semiconductors show promise due to their performance in high temperatures and at high levels of radiation. They also have the potential to be smaller and more lightweight than their silicon predecessors.

GaN on Silicon Carbide (GaN on SiC) is also being researched as a technology for amplifiers that allows satellites to transmit at high radio frequency from Earth. Funnily enough, it’s actually easier to make this material in space, since the ‘clean room’ vacuum effect makes the process of epitaxy – depositing a crystal substrate on top of another substrate – much more straightforward.

To infinity and beyond!

With the global market looking up for the next five years, there will be a high chance of progress in the development of space-specialised electronic components. With so many possible advancements in the industry, it’s highly likely it won’t be long before we see pioneering tech in space.

To bring us back down to Earth, if you’re looking for electronic components contact Lantek today to see what they can do for you. Email us at sales@lantekcorp.com or use the rapid enquiry form on our website.

Categories
Technology

What alternatives to WiFi are available?

What alternatives to WiFi are available?

WiFi has been an integral part of our life since the 90s when it first came into being. Originally created for wireless connections in cashier systems under the name WaveLAN, the trademarked WiFi name came into existence just before the turn of the century and hasn’t looked back since.

Alongside WiFi, cellular internet was also thriving, giving people the power to connect to a network through a phone signal. The current rollout of 5G shows that this method of connecting to the internet is also still very popular and getting more advanced by the year.

But since the conception of these two types of communications, several new methods have also been designed, and may be contenders to replace them in future.

How does WiFi work?

WiFi stands for Wireless Fidelity and uses radio waves to transmit signals between devices. The frequency is in the Gigahertz range, as opposed from Kilohertz and Megahertz for AM and FM radio respectively. This is why every iteration of cellular internet has a ‘G’ after it, because the frequency range for WiFi is between 2.4GHz and 5GHz.

But, as with all things, there are limitations to WiFi’s capabilities. Many current devices can’t yet use 5G as they weren’t built to support it, and 2.4G is now so congested it is almost always unusable too.

LiFi

This WiFi alternative, known as Light Fidelity, was first announced in 2011 during a TED Global Talk by Professor Harald Haas where he demonstrated it for the first time. The system uses light instead of radio waves, so lightbulbs can create a wireless type of network.

Despite the term being first coined by Haas, CSO of PureLiFi, several companies have since introduced products with strikingly similar names that also use light. This type of communication is called Optical Wireless Communications (OWC), which encompasses communications using infrared, ultraviolet and visible light.

Satellite WiFi

Starlink is just one example out of the category of satellite WiFi. The SpaceX subdivision uses a network of private satellites positioned across the globe to provide internet access. Currently the company has around 2,000 working satellites orbiting the planet.

Although this is already an established form of internet access, especially in rural areas, the investment in developing this technology and its versatility makes it a contender for the monopoly on WiFi in the future.

Mesh Networking

Mesh networks are often used as an extension to a regular WiFi home connection. The short-range network uses two modulation techniques, Binary and Quadrature Phase-shift Keying (BPSK and QPSK). This makes the mesh network devices act like high-speed Ultra-wideband ones.

The system works on the principle that you install nodes, like mini satellites, throughout your house. The nodes all act as stepping stones, which means the WiFi signal at any point in your house will be much stronger than if you only had one central router.

The fibre-optic future

With the recent advent of 5G and the increasing availability of faster WiFi thanks to tech like fibre optic broadband, it’s unlikely it will go out of fashion very soon. But it’s always nice to have a bit of choice, isn’t it?

One huge benefit that comes with the internet is being able to find electronics component suppliers at high speed. Whether you’re on satellite WiFi, cellular, or LiFi, contact lantek today at sales@lantekcorp.com to see how we can help you.